SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Budohoski KP, Zweifel C, Kasprowicz M, Sorrentino E, Diedler J, Brady KM, Smielewski P, Menon DK, Pickard JD, Kirkpatrick PJ, Czosnyka M. Br. J. Anaesth. 2011; 108(1): 89-99.

Affiliation

Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke' s Hospital, Hills Road, Cambridge CB2 0QQ, UK.

Copyright

(Copyright © 2011, Oxford University Press)

DOI

10.1093/bja/aer324

PMID

22037222

PMCID

PMC3236021

Abstract

BACKGROUND: /st>Brain tissue partial oxygen pressure (Pbt(O(2))) and near-infrared spectroscopy (NIRS) are novel methods to evaluate cerebral oxygenation. We studied the response patterns of Pbt(O(2)), NIRS, and cerebral blood flow velocity (CBFV) to changes in arterial pressure (AP) and intracranial pressure (ICP). METHODS: /st>Digital recordings of multimodal brain monitoring from 42 head-injured patients were retrospectively analysed. Response latencies and patterns of Pbt(O(2)), NIRS-derived parameters [tissue oxygenation index (TOI) and total haemoglobin index (THI)], and CBFV reactions to fluctuations of AP and ICP were studied. RESULTS: /st>One hundred and twenty-one events were identified. In reaction to alterations of AP, ICP reacted first [4.3 s; inter-quartile range (IQR) -4.9 to 22.0 s, followed by NIRS-derived parameters and CBFV (10.9 s; IQR: -5.9 to 39.6 s, 12.1 s; IQR: -3.0 to 49.1 s, 14.7 s; IQR: -8.8 to 52.3 s for THI, CBFV, and TOI, respectively), with Pbt(O(2)) reacting last (39.6 s; IQR: 16.4 to 66.0 s). The differences in reaction time between NIRS parameters and Pbt(O(2)) were significant (P<0.001). Similarly when reactions to ICP changes were analysed, NIRS parameters preceded Pbt(O(2)) (7.1 s; IQR: -8.8 to 195.0 s, 18.1 s; IQR: -20.6 to 80.7 s, 22.9 s; IQR: 11.0 to 53.0 s for THI, TOI, and Pbt(O(2)), respectively). Two main patterns of responses to AP changes were identified. With preserved cerebrovascular reactivity, TOI and Pbt(O(2)) followed the direction of AP. With impaired cerebrovascular reactivity, TOI and Pbt(O(2)) decreased while AP and ICP increased. In 77% of events, the direction of TOI changes was concordant with Pbt(O(2)). CONCLUSIONS: /st>NIRS and transcranial Doppler signals reacted first to AP and ICP changes. The reaction of Pbt(O(2)) is delayed. The results imply that the analysed modalities monitor different stages of cerebral oxygenation.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print