SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Courts C, Madea B, Schyma C. Int. J. Legal Med. 2011; 126(3): 391-397.

Affiliation

Institute of Forensic Medicine, University of Bonn, Stiftsplatz 12, 53111, Bonn, Germany, cornelius.courts@uni-bonn.de.

Copyright

(Copyright © 2011, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s00414-011-0655-5

PMID

22160245

Abstract

Traces of backspatter in gun barrels after homicidal or suicidal contact shots may be a valuable source of forensic evidence. Yet, a systematic investigation of the persistence and durability of DNA from biological traces in gun barrels is lacking. Our aim was to generate a realistic model to emulate blood and tissue spatters in gun barrels generated by contact gunshots at biological targets and to analyse the persistence and typability of DNA recovered from such stains. Herein, we devise and evaluate three different models for the emulation of backspatter from contact shots: a gelatine-based model with embedded blood bags, a model based on a spongious matrix soaked with blood and covered with a thin plastic membrane and a head model consisting of an acrylic half sphere filled with ballistic gelatine and with blood bags attached to the sphere under a 3-mm silicone layer. The sampling procedure for all three models: a first shot was fired with several types of guns at each model construction and subsequently a second shot was fired at a backstop. Blood samples were collected after each shot by probing the inner surface of the front and rear end of the respective gun barrel with a sterile swab. DNA was then extracted and quantified and up to 20 different short tandem repeat (STR) systems were amplified to generate DNA profiles. Although DNA quantity and STR typing results were heterogenous between the models, all models succeeded in delivering full STR profiles even after more than one shot. We conclude that biological traces in gun barrels are robust and accessible to forensic analysis and that systematic examination of the inside of gun barrels may be advisable for forensic casework.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print