SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Camacho DL, Nightingale RW, Myers BS. J. Biomech. 1999; 32(3): 293-301.

Affiliation

Department of Biomedical Engineering, Duke University, Durham, NC 27008-0281, USA.

Copyright

(Copyright © 1999, Elsevier Publishing)

DOI

unavailable

PMID

10093029

Abstract

A computational head-neck model was developed to test the hypothesis that increases in friction between the head and impact surface will increase head and neck injury risk during near-axial impact. The model consisted of rigid vertebrae interconnected by assemblies of nonlinear springs and dashpots, and a finite element shell model of the skull. For frictionless impact surfaces, the model reproduced the kinematics and kinetics observed in near-axial impacts to cadaveric head-neck specimens. Increases in the coefficient of friction between the head and impact surface over a range from 0.0 to 1.0 resulted in increases of up to 40, 113, 9.8, and 43% in peak post-buckled resultant neck forces, peak moment at the occiput-C1 joint, peak resultant head accelerations, and HIC values, respectively. The most dramatic increases in injury-predicting quantities occurred for COF increases from 0.0 to 0.2, while further COF increases above 0.5 generally produced only nominal changes. These data suggest that safety equipment and impact environments which minimize the friction between the head and impact surface may reduce the risk of head and neck injury in near-vertex head impact.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print