SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Riviere JE, Baynes RE, Brooks JD, Yeatts JL, Monteiro-Riviere NA. J. Toxicol. Environ. Health A 2003; 66(2): 133-151.

Affiliation

Center for Chemical Toxicology Research and Pharmacokinetics, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA. Jim_Riviere@ncsu.edu

Copyright

(Copyright © 2003, Informa - Taylor and Francis Group)

DOI

10.1080/15287390306400

PMID

12653019

Abstract

Exposure to N,N-diethyl-m-toluamide (DEET) commonly occurs in the general population and has been implicated as a contributory factor to the Gulf War Illness. The focus of the present studies was to determine the effect of coexposure factors, potentially encountered in a military environment, that could modulate transdermal flux of topically applied DEET. Factors investigated were vehicle, dose, coexposure to permethrin, low-level sulfur mustard, occlusion, and simultaneous systemic exposure to pyridostigmine bromide and the nerve agent stimulant diisopropylfluorophosphate (DFP). Studies were conducted using the isolated perfused porcine skin flap (IPPSF), with a few mechanistically oriented studies conducted using in vitro porcine skin and silastic membrane diffusion cells. DEET was quantitated using high-performance liquid chromatography. The vehicle-control transdermal DEET flux in the IPPSF was approximately 2 micrograms/cm2/h for both 7.5 and 75% DEET concentrations, a value similar to that reported in humans. DEET absorption was enhanced by coinfusion of pyridostigmine bromide and DFP, by the presence of sulfur mustard, or by dosing under complete occlusion. The greatest increase in baseline flux was fivefold. In vitro diffusion cell studies indicated that silastic membranes had two orders of magnitude greater permeability than porcine skin, and showed vehicle effects on flux that were not detected in the IPPSF. These results suggest that coexposure to a number of chemicals that potentially could be encountered in a military environment may modulate the percutaneous absorption of topically applied DEET beyond that seen for normal vehicles at typically applied concentrations.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print