SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kurzhanskiy AA, Varaiya P. Transp. Res. C Emerg. Technol. 2012; 21(1): 163-180.

Copyright

(Copyright © 2012, Elsevier Publishing)

DOI

10.1016/j.trc.2011.08.007

PMID

unavailable

Abstract

The paper presents an algorithm for the prediction and estimation of the state of a road network comprising freeways and arterials, described by a Cell Transmission Model (CTM). CTM divides the network into a collection of links. Each link is characterized by its fundamental diagram, which relates link speed to link density. The state of the network is the vector of link densities. The state is observed through measurements of speed and flow on some links. Demand is specified by the volume of vehicles entering the network at some links, and by split ratios according to which vehicles are routed through the network. There is model uncertainty: the parameters of the fundamental diagram are uncertain. There is uncertainty in the demand around the nominal forecast. Lastly, the measurements are uncertain. The uncertainty in each model parameter, demand, and measurement is specified by an interval. Given measurements over a time interval [0, t] and a horizon τ ⩾ 0, the algorithm computes a set of states with the guarantee that the actual state at time (t + τ) will lie in this set, consistent with the given measurements. In standard terminology the algorithm is a state prediction or an estimate accordingly as τ > 0 or =0. The flow exiting a link may be controlled by an open- or closed-loop controller such as a signal or ramp meter. An open-loop controller does not change the algorithm, indeed it may make the system more predictable by tightening density bounds downstream of the controller. In the feedback case, the value of the control depends on the estimated state bounds, and the algorithm is extended to compute the range of possible closed-loop control values. The algorithm is used in a proposed design of a decision support system for the I-80 integrated corridor.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print