SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Desharnais F, Chapman DM. J. Acoust. Soc. Am. 2002; 111(1 Pt 2): 544-553.

Affiliation

Defence Research Establishment Atlantic, Dartmouth, Nova Scotia, Canada. francine.desharnais@drea.dnd.ca

Copyright

(Copyright © 2002, American Institute of Physics)

DOI

unavailable

PMID

11858149

Abstract

During a sea trial on the Scotian Shelf, acoustic signals from a sonic boom were recorded on 11 hydrophones of a vertical array. The array spanned the lower 50 m of the water column above a sand bank at 76 m water depth. The source of the sonic boom was deduced to be a Concorde supersonic airliner traveling at about Mach 2. The waterborne waveform was observed to decay as an evanescent wave below the sea surface, as expected. The calm weather (sea state 1) resulted in low ambient noise and low self-noise at the hydrophones, and good signal-to-noise ratio on the upper hydrophones; however, the decreased signal amplitude is more difficult to detect towards the lower part of the water column. The period of the observed waveform is of the order 0.23 s, corresponding to a peak frequency of about 3 Hz. The shape of the measured waveform differs noticeably from the theoretical N-shape waveform predicted with Sawyers' theory [J. Acoust. Soc. Am. 44, 523-524 (1968)]. A simple shallow-ocean geoacoustic model suggests that this effect may be caused in part by seismo-acoustic interaction of the infrasonic waves with the elastic sediments that form the seabed.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print