SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Quinn KP, Winkelstein BA. J. Biomech. 2007; 40(10): 2299-2306.

Affiliation

Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104-6321, USA.

Copyright

(Copyright © 2007, Elsevier Publishing)

DOI

10.1016/j.jbiomech.2006.10.015

PMID

17141249

Abstract

The cervical facet joint has been identified as a source of neck pain, and its capsular ligament is a likely candidate for injury during whiplash. Many studies have shown that the mechanical properties of ligaments can be altered by subfailure injury. However, the subfailure mechanical response of the facet capsular ligament has not been well defined, particularly in the context of physiology and pain. Therefore, the goal of this study was to quantify the structural mechanics of the cervical facet capsule and define the threshold for altered structural responses in this ligament during distraction. Tensile failure tests were preformed using isolated C6/C7 rat facet capsular ligaments (n=8); gross ligament failure, the occurrence of minor ruptures and ligament yield were measured. Gross failure occurred at 2.45+/-0.60 N and 0.92+/-0.17 mm. However, the yield point occurred at 1.68+/-0.56 N and 0.57+/-0.08 mm, which was significantly less than gross failure (p<0.001 for both measurements). Maximum principal strain in the capsule at yield was 80+/-24%. Energy to yield was 14.3+/-3.4% of the total energy for a complete tear of the ligament. Ligament yield point occurred at a distraction magnitude in which pain symptoms begin to appear in vivo in the rat. These mechanical findings provide insight into the relationship between gross structural failure and painful loading for the facet capsular ligament, which has not been previously defined for such neck injuries. Findings also present a framework for more in-depth methods to define the threshold for persistent pain and could enable extrapolation to the human response.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print