SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Saikia D, Bordoloi NK, Chattopadhyay P, Chocklingam S, Ghosh SS, Mukherjee AK. Biochim. Biophys. Acta 2012; 1818(12): 3149-3157.

Affiliation

Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur-784 028, Assam, India.

Copyright

(Copyright © 2012, Elsevier Publishing)

DOI

10.1016/j.bbamem.2012.08.005

PMID

22921758

Abstract

An acidic phospholipase A(2) (RVVA-PLA(2)-I) purified from Daboia russelli venom demonstrated dose-dependent catalytic, mitochondrial and erythrocyte membrane damaging activities. RVVA-PLA(2)-I was non-lethal to mice at the tested dose, however, it affected the different organs of mice particularly the liver and cardiac tissues as deduced from the enzymatic activities measured in mice serum after injection of this PLA(2) enzyme. RVVA-PLA(2)-I preferentially hydrolyzed phospholipids (phosphatidylcholine) of erythrocyte membrane compared to the liver mitochondrial membrane. Interestingly, RVVA-PLA(2)-I failed to hydrolyze membrane phospholipids of HT-29 (colon adenocarcinoma) cells, which contain an abundance of phosphatidylcholine in its outer membrane, within 24h of incubation. The gas-chromatographic (GC) analysis of saturated/unsaturated fatty acids' release patterns from intact mitochondrial and erythrocyte membranes after the addition of RVVA-PLA(2)-I showed a distinctly different result. The results are certainly a reflection of differences in the outer membrane phospholipid composition of tested membranes owing to which they are hydrolyzed by the venom PLA(2)s to a different extent. The chemical modification of essential amino acids present in the active site, neutralization study with polyvalent antivenom and heat-inactivation of RVVA-PLA(2)-I suggested the correlation between catalytic and membrane damaging activities of this PLA(2) enzyme. Our study advocates that the presence of a large number of PLA(2)-sensitive phospholipid domains/composition, rather than only the phosphatidylcholine (PC) content of that particular membrane may determine the extent of membrane damage by a particular venom PLA(2) enzyme.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print