SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Karacozoff AM, Pekmezci M, Shellock FG. Mil. Med. 2013; 178(3): e380-e385.

Affiliation

Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045.

Copyright

(Copyright © 2013, Association of Military Surgeons of the United States)

DOI

10.7205/MILMED-D-12-00374

PMID

23707130

Abstract

The objective of this project was to evaluate magnetic resonance imaging (MRI) issues at 3 T for an armor-piercing bullet and to determine if this item could be identified using a ferromagnetic detection system. An armor-piercing bullet (.30 caliber, 7.62 × 39, copper-jacketed round, steel core; Norinco) underwent evaluation for magnetic field interactions, heating, and artifacts using standardized techniques. Heating was assessed with the bullet in a gelled-saline-filled phantom with MRI performed using a transmit/receive radio frequency body coil at a whole-body-averaged specific absorption rate of 2.9 W/kg for 15 minutes. Artifacts were characterized using T1-weighted spin echo and gradient echo pulse sequences. In addition, a special ferromagnetic detection system (Ferroguard Screener; Metrasens, Lisle, Illinois) was used in an attempt to identify this armor-piercing bullet. The findings indicated that the armor-piercing bullet showed substantial magnetic field interactions. Heating was not excessive. Artifacts were large and may create diagnostic problems if the area of interest is close to this bullet. The ferromagnetic detection system yielded a positive result. We concluded that this armor-piercing bullet is MR unsafe. Importantly, this ballistic item was identified using the particular ferromagnetic detection system utilized in this investigation, which has important implications for MRI screening and patient safety.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print