SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang W, Ge X, Tang Y, Du D, Liu D, Lin Y. Analyst 2013; 138(18): 5431-5436.

Affiliation

Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, P R China. deliliu2013@163.com.

Copyright

(Copyright © 2013, Royal Society of Chemistry)

DOI

10.1039/c3an00621b

PMID

23885349

Abstract

A nanoparticle-based fluorescence immunochromatographic test strip (FITS) coupled with a hand-held detector for highly selective and sensitive detection of phosphorylated acetylcholinesterase (AChE), an exposure biomarker of organophosphate (OP) pesticides and nerve agents, is reported. In this approach, OP-AChE adducts were selectively captured by quantum dot-tagged anti-AChE antibodies (Qdot-anti-AChE) and zirconia nanoparticles (ZrO2 NPs). The sandwich-like immunoreactions were performed among the Qdot-anti-AChE, OP-AChE and ZrO2 NPs to form a Qdot-anti-AChE-OP-AChE-ZrO2 complex, which was detected by recording the fluorescence intensity of Qdots captured during the test line. Paraoxon was used as the model OP pesticide. Under optimal conditions, this portable FITS immunosensor demonstrates a highly linear absorption response over the range of 0.01 nM to 10 nM OP-AChE, with a detection limit of 4 pM, coupled with good reproducibility. Moreover, the FITS immunosensor has been validated with OP-AChE spiked human plasma samples. This is the first report on the development of ZrO2 NP-based FITS for the detection of the OP-AChE adduct. The FITS immunosensor provides a sensitive and low-cost sensing platform for on-site screening/evaluating OP pesticides and nerve agents poisoning.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print