SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhao X, Dong T. Int. J. Environ. Res. Public Health 2013; 10(12): 6748-6763.

Affiliation

Department of Micro and Nano Systems Technology (IMST), Faculty of Technology and Maritime Sciences (TekMar), Vestfold University College (HiVE), Tønsberg N3103, Norway. Tao.Dong@hive.no.

Copyright

(Copyright © 2013, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ijerph10126748

PMID

24300075

Abstract

A bioluminescent-cell-based microfluidic device for sensing toxicants in drinking water was designed and fabricated. The system employed Vibrio fischeri cells as broad-spectrum sensors to monitor potential systemic cell toxicants in water, such as heavy metal ions and phenol. Specifically, the chip was designed for continuous detection. The chip design included two counter-flow micromixers, a T-junction droplet generator and six spiral microchannels. The cell suspension and water sample were introduced into the micromixers and dispersed into droplets in the air flow. This guaranteed sufficient oxygen supply for the cell sensors. Copper (Cu2+), zinc (Zn2+), potassium dichromate and 3,5-dichlorophenol were selected as typical toxicants to validate the sensing system. Preliminary tests verified that the system was an effective screening tool for acute toxicants although it could not recognize or quantify specific toxicants. A distinct non-linear relationship was observed between the zinc ion concentration and the Relative Luminescence Units (RLU) obtained during testing. Thus, the concentration of simple toxic chemicals in water can be roughly estimated by this system. The proposed device shows great promise for an early warning system for water safety.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print