SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Koob GF. Neuropharmacology 2009; 56(Suppl 1): 18-31.

Affiliation

Committee on the Neurobiology of Addictive Disorders, Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA. marends@scripps.edu

Copyright

(Copyright © 2009, Elsevier Publishing)

DOI

10.1016/j.neuropharm.2008.07.043

PMID

18725236

PMCID

PMC2637927

Abstract

Drug addiction can be defined by a compulsion to seek and take drug, loss of control in limiting intake, and the emergence of a negative emotional state when access to the drug is prevented. Drug addiction impacts multiple motivational mechanisms and can be conceptualized as a disorder that progresses from impulsivity (positive reinforcement) to compulsivity (negative reinforcement). The construct of negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in reward and stress within the basal forebrain structures involving the ventral striatum and extended amygdala. Specific neurochemical elements in these structures include not only decreases in reward neurotransmission, such as decreases in dopamine and opioid peptide function in the ventral striatum, but also recruitment of brain stress systems, such as corticotropin-releasing factor (CRF), in the extended amygdala. Acute withdrawal from all major drugs of abuse produces increases in reward thresholds, increases in anxiety-like responses, and increases in extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists also block excessive drug intake produced by dependence. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of addiction. Other components of brain stress systems in the extended amygdala that interact with CRF and may contribute to the negative motivational state of withdrawal include norepinephrine, dynorphin, and neuropeptide Y. The combination of loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement driving, at least in part, the compulsivity of addiction.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print