SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Pahlavani P, Delavar MR. Transp. Res. C Emerg. Technol. 2014; 40: 14-35.

Copyright

(Copyright © 2014, Elsevier Publishing)

DOI

10.1016/j.trc.2014.01.001

PMID

unavailable

Abstract

In this study, some different approaches were designed, implemented, and evaluated to perform multi-criteria route planning by considering a driver's preferences in multi-criteria route selection. At first, by using a designed neuro-fuzzy toolbox, the driver's preferences in multi-criteria route selection such as the preferred criteria in route selection, the number of route-rating classes, and the routes with the same rate were received. Next, to learn the driver's preferences in multi-criteria route selection and to classify any route based on these preferences, a methodology was proposed using a locally linear neuro-fuzzy model (LLNFM) trained with an incremental tree based learning algorithm. In this regard, the proposed LLNFM-based methodology reached better results for running-times, as well as root mean square error (RMSE) estimations in learning and testing processes of training/checking data-set in comparison with those of the proposed adaptive neuro-fuzzy inference system (ANFIS) based methodology. Finally, the trained LLNFM-based methodology was utilized to plan and predict a driver's preferred routes by classifying Pareto-optimal routes obtained by running the modified invasive weed optimization (IWO) algorithm between an origin and a destination of a real urban transportation network based on the driver's preferences in multi-criteria route selection.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print