SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chen S, Li X, Li Y, Sun J. ACS Nano 2015; 9(4): 4070-4076.

Copyright

(Copyright © 2015, American Chemical Society)

DOI

10.1021/acsnano.5b00121

PMID

25777158

Abstract

Flame-retardant and self-healing superhydrophobic coatings are fabricated on cotton fabrics by a convenient solution dipping method, which involves the sequential deposition of a trilayer of branched poly(ethylenimine) (bPEI), ammonium polyphosphate (APP) and fluorinated-decyl polyhedral oligomeric silsequioxane (F-POSS). When directly exposed to flame, such a trilayer coating generates a porous char layer because of its intumescent effect, successfully endowing the coated fabric with self-extinguishing property. Meanwhile, the preserved F-POSS in cotton fabrics and APP/bPEI coating produce a superhydrohobic surface with self-healing function. The coating can repetitively and autonomically restore superhydrophobicity once the superhydrophobicity is damaged. The resultant cotton fabrics, which are flame resistant, waterproof and self-cleaning, can be readily cleaned with simple water rinsing. Thus, the integration of self-healing superhydrophobicity with flame-retardancy provides a practical way to solve the problem regarding the washing durability of the flame-retardant coatings. The flame-retardant and superhydrophobic fabrics can endure more than 1000 cycles of abrasion under a pressure of 44.8 kPa without losing its flame-retardancy and self-healing superhydrophobicity, showing potential applications as multifunctional advanced textiles.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print