SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Amirjamshidi G, Roorda MJ. Transp. Res. D Trans. Environ. 2015; 34: 255-266.

Copyright

(Copyright © 2015, Elsevier Publishing)

DOI

10.1016/j.trd.2014.11.010

PMID

unavailable

Abstract

Driving cycles are an important input for state-of-the-art vehicle emission models. Development of a driving cycle requires second-by-second vehicle speed for a representative set of vehicles. Current standard driving cycles cannot reflect or forecast changes in traffic conditions. This paper introduces a method to develop representative driving cycles using simulated data from a calibrated microscopic traffic simulation model of the Toronto Waterfront Area. The simulation model is calibrated to reflect road counts, link speeds, and accelerations using a multi-objective genetic algorithm. The simulation is validated by comparing simulated vs. observed passenger freeway cycles. The simulation method is applied to develop AM peak hour driving cycles for light, medium and heavy duty trucks. The demonstration reveals differences in speed, acceleration, and driver aggressiveness between driving cycles for different vehicle types. These driving cycles are compared against a range of available driving cycles, showing different traffic conditions and driving behaviors, and suggesting a need for city-specific driving cycles. Emissions from the simulated driving cycles are also compared with EPA's Heavy Duty Urban Dynamometer Driving Schedule showing higher emission factors for the Toronto Waterfront cycles.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print