SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kent R, Forman JL, Crandall JR, Lessley DJ. Sports Biomech. 2015; ePub(ePub): 1-17.

Affiliation

a University of Virginia Center for Applied Biomechanics , Charlottesville , VA , USA.

Copyright

(Copyright © 2015, Edinburgh University Press)

DOI

10.1080/14763141.2015.1024277

PMID

25900121

Abstract

This study quantified the mechanical interactions between an American football cleat and eight surfaces used by professional American football teams. Loading conditions were applied with a custom-built testing apparatus designed to represent play-relevant maneuvers of elite athletes. Two natural grass and six infill artificial surfaces were tested with the cleated portion of a shoe intended for use on either surface type. In translation tests with a 2. 8-kN vertical load, the grass surfaces limited the horizontal force on the cleats by tearing. This tearing was not observed with the artificial surfaces, which allowed less motion and generated greater horizontal force (3.2 kN vs. 4.5 kN, p < 0.05). Similarly, rotation tests generated less angular displacement and greater torque on the artificial surfaces (145 N m vs. 197 N m, p < 0.05). Translation/drop tests, in which the foot-form was launched into the surfaces with both horizontal and vertical velocity components generated less peak horizontal force on the natural surfaces than on the artificial surfaces (2.4 kN vs. 3.0 kN, p < 0.05). These results suggest a force-limiting mechanism inherent to natural grass surfaces. Future work should consider implications of these findings for performance and injury risk and should evaluate the findings' sensitivity to cleat pattern and playing conditions.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print