SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Agoglia AE, Holstein SE, Reid G, Hodge CW. Alcohol Clin. Exp. Res. 2015; 39(9): 1680-1690.

Affiliation

Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina.

Copyright

(Copyright © 2015, John Wiley and Sons)

DOI

10.1111/acer.12819

PMID

26247621

Abstract

BACKGROUND: Binge drinking during adolescence is associated with increased risk for developing alcohol use disorders; however, the neural mechanisms underlying this liability are unclear. In this study, we sought to determine whether binge drinking alters expression or phosphorylation of 2 molecular mechanisms of neuroplasticity, calcium/calmodulin-dependent kinase II alpha (CaMKIIα) and the GluA1 subunit of AMPA receptors (AMPARs) in addiction-associated brain regions. We also asked whether activation of CaMKIIα-dependent AMPAR activity escalates binge-like drinking.

METHODS: To address these questions, CaMKIIαT286 and GluA1S831 protein phosphorylation and expression were assessed in the amygdala and striatum of adolescent and adult male C57BL/6J mice immediately after voluntary binge-like alcohol drinking (blood alcohol >80 mg/dl). In separate mice, effects of the CaMKIIα-dependent GluA1S831 phosphorylation (pGluA1S831 )-enhancing drug tianeptine were tested on binge-like alcohol consumption in both age groups.

RESULTS: Binge-like drinking decreased CaMKIIαT286 phosphorylation (pCaMKIIαT286 ) selectively in adolescent amygdala with no effect in adults. Alcohol also produced a trend for reduced pGluA1S831 expression in adolescent amygdala but differentially increased pGluA1S831 in adult amygdala. No effects were observed in the nucleus accumbens or dorsal striatum. Tianeptine increased binge-like alcohol consumption in adolescents but decreased alcohol consumption in adults. Sucrose consumption was similarly decreased by tianeptine pretreatment in both ages.

CONCLUSIONS: These data show that the adolescent and adult amygdalae are differentially sensitive to effects of binge-like alcohol drinking on plasticity-linked glutamate signaling molecules. Tianeptine-induced increases in binge-like drinking only in adolescents suggest that differential CaMKIIα-dependent AMPAR activation may underlie age-related escalation of binge drinking.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print