SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bailey ZS, Grinter MB, Campos DT, Vande Vord PJ. Neurosci. Lett. 2015; 604: 119-123.

Affiliation

Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24060; Salem Veterans Affairs Medical Center, Salem, VA 24153. Electronic address: pvord@vt.edu.

Copyright

(Copyright © 2015, Elsevier Publishing)

DOI

10.1016/j.neulet.2015.07.035

PMID

26232681

Abstract

Traumatic brain injury (TBI) has a high prevalence in our society and often leads to morbidity and mortality. TBI also occurs frequently in a military setting where exposure to blast waves is common. Abnormal gene expression involved with oxidative stress, inflammation and neuronal apoptosis has been well documented following blast induced neurotrauma (BINT). Altered epigenetic transcriptional regulation through DNA methylation has been implicated in the pathology of the injury. Imbalance between DNA methylation and DNA demethylation may lead to altered methylation patterns and subsequent changes in gene transcription. DNA methyltransferase enzymes (DNMT1, DNMT3a, and DNMT3b) are responsible for the addition of methyl groups to DNA, DNA methylation. Whereas the combined function of ten-eleven translocation enzymes (TET1, TET2, and TET3) and thymine-DNA glycosylase (TDG) result in the removal of methyl groups from DNA, DNA demethylation. We used an established rodent model of BINT to assess changes in DNA methylation and demethylation enzymes following injury. Three different blast overpressures were investigated (10, 17 and 23 psi). Gene expression was investigated in the prefrontal cortex and hippocampus two weeks following injury. We observed DNMT, TET and TDG expression changes between pressure groups and brain regions. The hippocampus was more vulnerable to enzyme expression changes than the prefrontal cortex, which correlated with aberrant DNA methylation. A significant negative correlation was found between global DNA methylation and the magnitude of blast overpressure exposure. Through transcriptional regulation, altered DNA methylation patterns may offer insight into the characteristic outcomes associated with the injury pathology including inflammation, oxidative stress and apoptosis. As such, these enzymes may be important targets to future therapeutic intervention strategies.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print