SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sigman ME, Williams MR. Forensic Sci. Int. 2016; 264: 113-121.

Affiliation

National Center for Forensic Science, University of Central Florida, P.O. Box 162367, Orlando, FL 32816-2367, USA.

Copyright

(Copyright © 2016, Elsevier Publishing)

DOI

10.1016/j.forsciint.2016.03.051

PMID

27081767

Abstract

RESULTS are presented from support vector machine (SVM), linear and quadratic discriminant analysis (LDA and QDA) and k-nearest neighbors (kNN) methods of binary classification of fire debris samples as positive or negative for ignitable liquid residue. Training samples were prepared by computationally mixing data from ignitable liquid and substrate pyrolysis databases. Validation was performed on an unseen set of computationally mixed (in silico) data and on fire debris from large-scale research burns. The probabilities of class membership were calculated using an uninformative (equal) prior and a likelihood ratio was calculated from the resulting class membership probabilities. The SVM method demonstrated a high discrimination, low error rate and good calibration for the in silico validation data; however, the performance decreased significantly for the fire debris validation data, as indicated by a significant increase in the error rate and decrease in the calibration. The QDA and kNN methods showed similar performance trends. The LDA method gave poorer discrimination, higher error rates and slightly poorer calibration for the in silico validation data; however the performance did not deteriorate for the fire debris validation data.

Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print