SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lowes LN. Transp. Res. Rec. 2002; 1814: 253-261.

Copyright

(Copyright © 2002, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

unavailable

PMID

unavailable

Abstract

Experimental investigation of the response of older and newly constructed reinforced concrete beam-column bridge joints indicates that inelastic joint action may contribute to global bridge response under earthquake loading. A model is proposed to simulate the response of these components under reversed-cyclic loading. This model provides a simple representation of the primary mechanisms that determine inelastic behavior: failure of the joint core under shear loading and anchorage failure of reinforcement embedded in the joint. The model is implemented as a 4-node, 12-degrees-of-freedom element that is appropriate for use with typical hysteretic beam-collumn elements in two-dimensional nonlinear analysis of reinforced concrete structures. A simple calibration procedure is proposed to define load-deformation response on the basis of material, geometric, and design parameters. The proposed joint model and calibration procedure are evaluated through comparison of simulated and observed response for a subassemblage tested in the laboratory. This comparison shows that this relatively simple model and calibration procedure can be used to simulate the fundamental characteristics of beam-column joint response under reversed-cyclic loading.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print