SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wohlman IM, Composto GM, Heck DE, Heindel ND, Lacey CJ, Guillon CD, Casillas RP, Croutch CR, Gerecke DR, Laskin DL, Joseph LB, Laskin JD. Toxicol. Appl. Pharmacol. 2016; 303: 30-44.

Affiliation

Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ, United States. Electronic address: jlaskin@eohsi.rutgers.edu.

Copyright

(Copyright © 2016, Elsevier Publishing)

DOI

10.1016/j.taap.2016.04.014

PMID

27125198

Abstract

Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants.

Copyright © 2015. Published by Elsevier Inc.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print