SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Segal AY, Sletten TL, Flynn-Evans EE, Lockley SW, Rajaratnam SM. J. Biol. Rhythms 2016; 31(5): 470-482.

Affiliation

Monash Institute of Cognitive and Clinical Neurosciences, Sleep and Circadian Medicine Laboratory, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA shantha.rajaratnam@monash.edu.

Copyright

(Copyright © 2016, SAGE Publishing)

DOI

10.1177/0748730416659953

PMID

27474192

Abstract

While previous studies have demonstrated short-wavelength sensitivity to the acute alerting effects of light during the biological night, fewer studies have assessed the alerting effect of light during the daytime. This study assessed the wavelength-dependent sensitivity of the acute alerting effects of daytime light exposure following chronic sleep restriction in 60 young adults (29 men, 31 women; 22.5 ± 3.1 mean ± SD years). Participants were restricted to 5 h time in bed the night before laboratory admission and 3 h time in bed in the laboratory, aligned by wake time. Participants were randomized for exposure to 3 h total of either narrowband blue (λmax 458-480 nm, n = 23) or green light (λmax 551-555 nm, n = 25) of equal photon densities (2.8-8.4 × 10(13) photons/cm(2)/sec), beginning 3.25 h after waking, and compared with a darkness control (0 lux, n = 12). Subjective sleepiness (Karolinska Sleepiness Scale), sustained attention (auditory Psychomotor Vigilance Task), mood (Profile of Mood States Bi-Polar form), working memory (2-back task), selective attention (Stroop task), and polysomnographic and ocular sleepiness measures (Optalert) were assessed prior to, during, and after light exposure. We found no significant effect of light wavelength on these measures, with the exception of a single mood subscale. Further research is needed to optimize the characteristics of lighting systems to induce alerting effects during the daytime, taking into account potential interactions between homeostatic sleep pressure, circadian phase, and light responsiveness.

© 2016 The Author(s).


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print