SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ilchibaeva TV, Tsybko AS, Kozhemyakina RV, Popova NK, Naumenko VS. Eur. J. Neurosci. 2016; 44(7): 2467-2473.

Affiliation

Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia.

Copyright

(Copyright © 2016, Federation of European Neuroscience Societies, Publisher John Wiley and Sons)

DOI

10.1111/ejn.13365

PMID

27519646

Abstract

Glial cell line-derived neurotrophic factor (GDNF) plays an important role in maintenance of neuronal system throughout life. However, there is a lack of data on the involvement of GDNF in the regulation of different kinds of behavior. In the current study GDNF, its precursor (proGDNF) and GDNF mRNA levels were investigated in the brain of rats selectively bred for 85 generations for either high level or for the lack of affective aggressiveness towards human. It was found that GDNF mRNA level was decreased in the frontal cortex, increased in the raphe nuclei area of the midbrain of aggressive rats compared to tame animals and was not detected in the amygdala and hypothalamus. The level of proGDNF was reduced in the raphe nuclei area of the midbrain of highly aggressive rats and was not detected in the striatum, nucleus accumbens of investigated animals. Two forms of mature GDNF - monomer and dimer were revealed. GDNF monomer level was increased in the raphe nuclei area, substantia nigra and amygdala of aggressive rats and it was not found in the frontal cortex and nucleus accumbens of investigated rats. Dimer GDNF level was found in all investigated brain structures. It was reduced in the hippocampus and increased in amygdala of highly aggressive rats. Thus, considerable structure-specific differences in GDNF expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of both mature GDNF monomer and dimer as well as proGDNF in the mechanism underlying genetically defined aggressiveness. This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print