SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Capecci M, Pepa L, Verdini F, Ceravolo MG. Gait Posture 2016; 50: 28-33.

Affiliation

Department of Experimental and Clinical Medicine, Neurorehabilitation Clinic, "Politecnica delle Marche" University, Ancona, AN, Italy.

Copyright

(Copyright © 2016, Elsevier Publishing)

DOI

10.1016/j.gaitpost.2016.08.018

PMID

27567449

Abstract

INTRODUCTION: The freezing of gait (FOG) is a common and highly distressing motor symptom in patients with Parkinson's Disease (PD). Effective management of FOG is difficult given its episodic nature, heterogeneous manifestation and limited responsiveness to drug treatment.

METHODS: In order to verify the acceptance of a smartphone-based architecture and its reliability at detecting FOG in real-time, we studied 20 patients suffering from PD-related FOG. They were asked to perform video-recorded Timed Up and Go (TUG) test with and without dual-tasks while wearing the smartphone. Video and accelerometer recordings were synchronized in order to assess the reliability of the FOG detection system as compared to the judgement of the clinicians assessing the videos. The architecture uses two different algorithms, one applying the Freezing and Energy Index (Moore-Bächlin Algorithm), and the other adding information about step cadence, to algorithm 1.

RESULTS: A total 98 FOG events were recognized by clinicians based on video recordings, while only 7 FOG events were missed by the application. Sensitivity and specificity were 70.1% and 84.1%, respectively, for the Moore-Bächlin Algorithm, rising to 87.57% and 94.97%, respectively, for algorithm 2 (McNemar value=28.42; p=0.0073).

CONCLUSION: Results confirm previous data on the reliability of Moore-Bächlin Algorithm, while indicating that the evolution of this architecture can identify FOG episodes with higher sensitivity and specificity. An acceptable, reliable and easy-to-implement FOG detection system can support a better quantification of the phenomenon and hence provide data useful to ascertain the efficacy of therapeutic approaches.

Copyright © 2016 Elsevier B.V. All rights reserved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print