SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Seeger TA, Kirton A, Esser MJ, Gallagher C, Dunn J, Zewdie E, Damji O, Ciechanski P, Barlow KM. Brain Stimul. 2016; 10(2): 305-314.

Affiliation

Cumming School of Medicine, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, Alberta Children's Hospital, Calgary, Canada. Electronic address: karen.barlow@albertahealthservices.ca.

Copyright

(Copyright © 2016, Elsevier Publishing)

DOI

10.1016/j.brs.2016.11.011

PMID

27916406

Abstract

INTRODUCTION: Mild traumatic brain injury (mTBI) outcomes are variable, and 10-15% may suffer from prolonged symptoms beyond 3 months that impair the child's return to normal activities. Neurophysiological mechanisms of mTBI are incompletely understood, particularly in children, but alterations in cortical excitability have been proposed to underlie post-concussion syndrome. Improved understanding is required to advance interventions and improve outcomes.

OBJECTIVE/HYPOTHESIS: To determine if cortical excitability is altered in children with mTBI, and its association with clinical symptoms.

METHODS: This was a cross-sectional controlled cohort study. School-aged children (8-18 years) with mTBI were compared to healthy controls. Cortical excitability was measured using multiple TMS paradigms in children with (symptomatic) and without (recovered) persistent symptoms one-month post-injury. Primary outcome was the cortical silent period (cSP), a potential neurophysiological biomarker of GABAergic inhibition. Secondary outcomes included additional TMS neurophysiology, safety and tolerability. Associations between neurophysiology parameters and clinical symptoms were evaluated.

RESULTS: Fifty-three children with mTBI (55% male; mean age 14.1 SD: 2.4 years; 35 symptomatic and 27 asymptomatic participants) and 28 controls (46% male; mean age 14.3 SD: 3.1 years) were enrolled. cSP duration was similar between groups (F (2, 73) = 0.55, p = 0.582). Log10 long interval intracortical inhibition (LICI) was reduced in symptomatic participants compared to healthy controls (F (2, 59) = 3.83, p = 0.027). Procedures were well tolerated with no serious adverse events.

CONCLUSIONS: TMS measures of cortical excitability are altered at one month in children with mTBI. Long interval cortical inhibition is decreased in children who remain symptomatic at one month post-injury.

Copyright © 2016 Elsevier Inc. All rights reserved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print