SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Nieuwhof F, Reelick MF, Maidan I, Mirelman A, Hausdorff JM, Olde Rikkert MG, Bloem BR, Muthalib M, Claassen JA. Pilot Feasibility Stud. 2016; 2: e59.

Affiliation

Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands ; Departments of Neurology, Geriatric Medicine, and Radboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands.

Copyright

(Copyright © 2016, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/s40814-016-0099-2

PMID

27965875

PMCID

PMC5154104

Abstract

BACKGROUND: Many patients with Parkinson's disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC) to such difficulties. In this pilot study, we examined the feasibility of using a new portable and wireless fNIRS device to measure PFC activity during different dual task walking protocols in PD. Specifically, we tested whether PD patients were able to perform the protocol and whether we were able to measure the typical fNIRS signal of neuronal activity.

METHODS: We included 14 PD patients (age 71.2 ± 5.4 years, Hoehn and Yahr stage II/III). The protocol consisted of five repetitions of three conditions: walking while (i) counting forwards, (ii) serially subtracting, and (iii) reciting digit spans. Ability to complete this protocol, perceived exertion, burden of the fNIRS devices, and concentrations of oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin from the left and right PFC were measured.

RESULTS: Two participants were unable to complete the protocol due to fatigue and mobility safety concerns. The remaining 12 participants experienced no burden from the two fNIRS devices and completed the protocol with ease. Bilateral PFC O2Hb concentrations increased during walking while serially subtracting (left PFC 0.46 μmol/L, 95 % confidence interval (CI) 0.12-0.81, right PFC 0.49 μmol/L, 95 % CI 0.14-0.84) and reciting digit spans (left PFC 0.36 μmol/L, 95 % CI 0.03-0.70, right PFC 0.44 μmol/L, 95 % CI 0.09-0.78) when compared to rest. HHb concentrations did not differ between the walking tasks and rest.

CONCLUSIONS: These findings suggest that a new wireless fNIRS device is a feasible measure of PFC activity in PD during dual task walking. Future studies should reduce the level of noise and inter-individual variability to enable measuring differences in PFC activity between different dual walking conditions and across health states.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print