SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yahata N, Kasai K, Kawato M. Psychiatry Clin. Neurosci. 2016; 71(4): 215-237.

Affiliation

ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan.

Copyright

(Copyright © 2016, John Wiley and Sons)

DOI

10.1111/pcn.12502

PMID

28032396

Abstract

Psychiatry research has long experienced a stagnation stemming from a lack of understanding of the neurobiological underpinnings of phenomenologically defined mental disorders. Recently, the application of computational neuroscience to psychiatry research has shown great promise in establishing a link between phenomenological and pathophysiological aspects of mental disorders, thereby recasting current nosology in more biologically meaningful dimensions. In this review, we highlight recent investigations in computational neuroscience that undertook either theory- or data-driven approaches to quantitatively delineate the mechanisms of mental disorders. The theory-driven approach, including reinforcement learning models, plays an integrative role in this process by enabling correspondence between behavior and disorder-specific alterations at multiple levels of brain organization, ranging from molecules to cells to circuits. Previous studies explicated a plethora of defining symptoms of mental disorders, including anhedonia, inattention, and poor executive function. The data-driven approach, on the other hand, is an emerging field in computational neuroscience seeking to identify disorder-specific features among high-dimensional big data. Remarkably, various machine-learning techniques have been applied to neuroimaging data, and the extracted disorder-specific features were used for automatic case-control classification. For many disorders, the reported accuracies have reached 90% or more. However, we note that rigorous tests on independent cohorts are critically required to translate this research into clinical applications. Finally, we discuss the utility of the disorder-specific features found by the data-driven approach to psychiatric therapies, including neurofeedback. Such developments will allow simultaneous diagnosis and treatment of mental disorders using neuroimaging, thereby establishing "theranostics" for the first time in clinical psychiatry.

This article is protected by copyright. All rights reserved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print