SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Brooks JR, Garcia JO, Kerick SE, Vettel JM. Front. Syst. Neurosci. 2016; 10: e106.

Affiliation

Human Research and Engineering Directorate, US Army Research LaboratoryAdelphi, MD, USA; Department of Psychological and Brain Sciences, University of CaliforniaSanta Barbara, CA, USA; Department of Bioengineering, University of PennsylvaniaPhiladelphia, PA, USA.

Copyright

(Copyright © 2016, Frontiers Research Foundation)

DOI

10.3389/fnsys.2016.00106

PMID

28082875

Abstract

Driving a motor vehicle is an inherently complex task that requires robust control to avoid catastrophic accidents. Drivers must maintain their vehicle in the middle of the travel lane to avoid high speed collisions with other traffic. Interestingly, while a vehicle's lane deviation (LD) is critical, studies have demonstrated that heading error (HE) is one of the primary variables drivers use to determine a steering response, which directly controls the position of the vehicle in the lane. In this study, we examined how the brain represents the dichotomy between control/response parameters (heading, reaction time (RT), and steering wheel corrections) and task-critical parameters (LD). Specifically, we examined electroencephalography (EEG) alpha band power (8-13 Hz) from estimated sources in right and left parietal regions, and related this activity to four metrics of driving performance. Our results demonstrate differential task involvement between the two hemispheres: right parietal activity was most closely related to LD, whereas left parietal activity was most closely related to HE, RT and steering responses. Furthermore, HE, RT and steering wheel corrections increased over the duration of the experiment while LD did not. Collectively, our results suggest that the brain uses differential monitoring and control strategies in the right and left parietal regions to control a motor vehicle. Our results suggest that the regulation of this control changes over time while maintaining critical task performance. These results are interpreted in two complementary theoretical frameworks: the uncontrolled manifold and compensatory control theories. The central tenet of these frameworks permits performance variability in parameters (i.e., HE, RT and steering) so far as it does not interfere with critical task execution (i.e., LD). Our results extend the existing research by demonstrating potential neural substrates for this phenomenon which may serve as potential targets for brain-computer interfaces that predict poor driving performance.


Language: en

Keywords

alpha rhythm; attention; driving; heading error; lane deviation; parietal lobe; steering wheel

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print