SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wang E, Nyberg SK, Hoff J, Zhao J, Leivseth G, Tørhaug T, Husby OS, Helgerud J, Richardson RS. Exp. Gerontol. 2017; 91: 64-71.

Affiliation

Department of Medicine, University of Utah, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.

Copyright

(Copyright © 2017, Elsevier Publishing)

DOI

10.1016/j.exger.2017.02.071

PMID

28232199

Abstract

Although aging is typically associated with a decreased efficiency of locomotion, somewhat surprisingly, there is also a reduction in the proportion of less efficient fast-twitch Type II skeletal muscle fibers and subsequently a greater propensity for falls. Maximal strength training (MST), with an emphasis on velocity in the concentric phase, improves maximal strength, the rate of force development (RFD), and work efficiency, but the impact on muscle morphology in the elderly is unknown. Therefore we evaluated force production, walking work efficiency, and muscle morphology in 11 old (72±3years) subjects before and after MST of the legs. Additionally, for reference, the MST-induced morphometric changes were compared with 7 old (74±6years) subjects who performed conventional strength training (CST), with focus on hypertrophy, as well as 13 young (24±2years) controls. As expected, MST in the old improved maximal strength (68%), RFD (48%), and work efficiency (12%), restoring each to a level similar to the young. However, of importance, these MST-induced functional changes were accompanied by a significant increase in the size (66%) and shift toward a larger percentage (56%) of Type II skeletal muscle fibers, mirroring the adaptations in the hypertrophy trained old subjects, with muscle composition now being similar to the young. In conclusion, MST can increase both work efficiency and Type II skeletal muscle fiber size and percentage in the elderly, supporting the potential role of MST as a countermeasure to maintain both physical function and fall prevention in this population.

Copyright © 2017. Published by Elsevier Inc.


Language: en

Keywords

Aging; Heavy resistance training; Rate of force development; Walking efficiency

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print