SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Iyoho AE, Ng LJ, MacFadden L. Mil. Med. 2017; 182(S1): 295-303.

Affiliation

L-3 Applied Technologies, Inc., 10180 Barnes Canyon Road, Suite 100, San Diego, CA 92121-5701.

Copyright

(Copyright © 2017, Association of Military Surgeons of the United States)

DOI

10.7205/MILMED-D-16-00213

PMID

28291489

Abstract

In January 2013, the Department of Defense lifted a ban that had prevented women from holding combat positions in the military. However, innate differences in physical traits and physiology between men and women likely will result in differences in physical performance. Sex differences in thermoregulation is a key area that needs to be examined due to the potential impact on physical performance. Therefore, we expanded our previously developed thermoregulation model (TRM) to include the effects of gender. Women have been found to have a lower sweat output in heat stress and lesser shivering in cold stress than men; therefore, the equations for sweat mass loss rate and shivering heat generation were modified for women accordingly. The updated TRM showed good agreement with female data collected from exercise in cool to hot conditions, cold air exposure, and cold water immersion. Gender differences in sweat evaporation appear minimal except for sufficiently high exercise-heat combinations. Gender differences in core temperature and heat generation during cold stress are significant. The expanded TRM can be used to assess gender-specific thermal response with future application to predicting performance differences and optimizing warfighter effectiveness for a wide range of military relevant tasks.

Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print