SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ketko I, Plotnik M, Yanovich R, Gefen A, Heled Y. Ergonomics 2017; 60(10): 1415-1424.

Affiliation

Heller Institute of Medical Research, Sheba Medical Center , Tel Hashomer , Israel.

Copyright

(Copyright © 2017, Informa - Taylor and Francis Group)

DOI

10.1080/00140139.2017.1308561

PMID

28393680

Abstract

Soldiers are often required to carry loads which impose biomechanical strain on the human body. This can adversely affect physical performances. Recently, wheel-based devices (WBD) were designed to reduce the load on the soldier. In the present study, a prototype of this newly developed WBD was evaluated. Thirteen volunteers performed three exercise protocols on a treadmill as follows: (1) no load; (2) carrying 40% of their bodyweight with a backpack or; (3) with the WBD. Data acquisition included: gait parameters, vertical ground reaction forces (VGRF) and contact pressure acting on the shoulder. Biomechanical analysis showed that the WBD decreased the contact pressure on the shoulder and the VGRF. However, greater gait variability, in terms of cycle-to-cycle gait line generation, was observed, which might point to a difficulty in maintaining stability while walking. The study suggests that WBD has a potential to reduce the biomechanical strain on the soldier while carrying heavy loads. Future potential adjustments for the development of a better WBD-based solution are suggested. Practitioner Summary: The present research observed the potential biomechanical advantages of using a wheel-based device designed to reduce the load on the soldier. It contributed to a lower mechanical force on the soldier's body, yet causing modulations in gait control. Future design adjustments should be made to optimise the platform.


Language: en

Keywords

Soldier; backpack; gait variability; ground reaction forces; pressure

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print