SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kainz H, Graham D, Edwards J, Walsh HPJ, Maine S, Boyd RN, Lloyd DG, Modenese L, Carty CP. Gait Posture 2017; 54: 325-331.

Affiliation

School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; Centre for Musculoskeletal Research, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; Queensland Children's Motion Analysis Service, Queensland Paediatric Rehabilitation Service, Children's Health Queensland Hospital and Health Services, Brisbane, Australia. Electronic address: c.carty@griffith.edu.au.

Copyright

(Copyright © 2017, Elsevier Publishing)

DOI

10.1016/j.gaitpost.2017.04.001

PMID

28411552

Abstract

Three-dimensional gait analysis (3DGA) has become a common clinical tool for treatment planning in children with cerebral palsy (CP). Many clinical gait laboratories use the conventional gait analysis model (e.g. Plug-in-Gait model), which uses Direct Kinematics (DK) for joint kinematic calculations, whereas, musculoskeletal models, mainly used for research, use Inverse Kinematics (IK). Musculoskeletal IK models have the advantage of enabling additional analyses which might improve the clinical decision-making in children with CP. Before any new model can be used in a clinical setting, its reliability has to be evaluated and compared to a commonly used clinical gait model (e.g. Plug-in-Gait model) which was the purpose of this study. Two testers performed 3DGA in eleven CP and seven typically developing participants on two occasions. Intra- and inter-tester standard deviations (SD) and standard error of measurement (SEM) were used to compare the reliability of two DK models (Plug-in-Gait and a six degrees-of-freedom model solved using Vicon software) and two IK models (two modifications of 'gait2392' solved using OpenSim). All models showed good reliability (mean SEM of 3.0° over all analysed models and joint angles). Variations in joint kinetics were less in typically developed than in CP participants. The modified 'gait2392' model which included all the joint rotations commonly reported in clinical 3DGA, showed reasonable reliable joint kinematic and kinetic estimates, and allows additional musculoskeletal analysis on surgically adjustable parameters, e.g. muscle-tendon lengths, and, therefore, is a suitable model for clinical gait analysis.

Copyright © 2017. Published by Elsevier B.V.


Language: en

Keywords

Cerebral palsy; Gait analysis; Inverse kinematic; OpenSim; Plug-in- Gait; Reliability

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print