SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

O'Halloran L, Cao Z, Ruddy K, Jollans L, Albaugh MD, Aleni A, Potter AS, Vahey N, Banaschewski T, Hohmann S, Bokde ALW, Bromberg U, Büchel C, Quinlan EB, Desrivieres S, Flor H, Frouin V, Gowland P, Heinz A, Ittermann B, Nees F, Orfanos DP, Paus T, Smolka MN, Walter H, Schumann G, Garavan H, Kelly C, Whelan R. Neuroimage 2018; 169: 395-406.

Affiliation

School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Global Brain Health Institute, Trinity College Dublin, Ireland. Electronic address: Robert.whelan@tcd.ie.

Copyright

(Copyright © 2018, Elsevier Publishing)

DOI

10.1016/j.neuroimage.2017.12.030

PMID

29274748

Abstract

Moment-to-moment reaction time variability on tasks of attention, often quantified by intra-individual response variability (IRV), provides a good indication of the degree to which an individual is vulnerable to lapses in sustained attention. Increased IRV is a hallmark of several disorders of attention, including Attention-Deficit/Hyperactivity Disorder (ADHD). Here, task-based fMRI was used to provide the first examination of how average brain activation and functional connectivity patterns in adolescents are related to individual differences in sustained attention as measured by IRV. We computed IRV in a large sample of adolescents (n = 758) across 'Go' trials of a Stop Signal Task (SST). A data-driven, multi-step analysis approach was used to identify networks associated with low IRV (i.e., good sustained attention) and high IRV (i.e., poorer sustained attention). Low IRV was associated with greater functional segregation (i.e., stronger negative connectivity) amongst an array of brain networks, particularly between cerebellum and motor, cerebellum and prefrontal, and occipital and motor networks. In contrast, high IRV was associated with stronger positive connectivity within the motor network bilaterally and between motor and parietal, prefrontal, and limbic networks. Consistent with these observations, a separate sample of adolescents exhibiting elevated ADHD symptoms had increased fMRI activation and stronger positive connectivity within the same motor network denoting poorer sustained attention, compared to a matched asymptomatic control sample. With respect to the functional connectivity signature of low IRV, there were no statistically significant differences in networks denoting good sustained attention between the ADHD symptom group and asymptomatic control group. We propose that sustained attentional processes are facilitated by an array of neural networks working together, and provide an empirical account of how the functional role of the cerebellum extends to cognition in adolescents. This work highlights the involvement of motor cortex in the integrity of sustained attention, and suggests that atypically strong connectivity within motor networks characterizes poor attentional capacity in both typically developing and ADHD symptomatic adolescents.

Copyright © 2017. Published by Elsevier Inc.


Language: en

Keywords

ADHD; Attention; Functional connectivity; Reaction-time variability; SST; fMRI

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print