SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chen D, Ahn S. Transp. Res. B Methodol. 2018; 108: 1-20.

Copyright

(Copyright © 2018, Elsevier Publishing)

DOI

10.1016/j.trb.2017.12.006

PMID

unavailable

Abstract

This paper investigates the mechanisms of how spatially distributed lane changes (LCs) interact and contribute to "capacity-drop" at three types of extended bottlenecks: merge, diverge, and weave. A hybrid approach is used to study the problem: analytical approach to capture the behavior of merging and diverging LCs and numerical simulations to quantify capacity-drop considering various geometric configurations of extended bottlenecks. This study focuses on the impact of LC vehicles' bounded acceleration on "void" (wasted space) creation in traffic streams when they insert/desert at a lower speed, and interactions among multiple voids. We found that (1) LCs closer to the downstream end of bottlenecks are more likely to create persisting voids and contribute to capacity-drop. (2) For weave bottlenecks, capacity-drop is governed by two counteracting effects of LCs: persisting voids and utilization of vacancies created by diverging vehicles; (3) the more balanced the merging and diverging flows, the lower the capacity-drop; and (4) capacity-drop is minimum if merging LCs occur downstream of diverging LCs, and maximum in the opposite alignment.


Language: en

Keywords

Capacity-drop; Diverge; Extended bottleneck; Lane-changing; Merge; Weave

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print