SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Shanahan CJ, Boonstra FMC, Cofré Lizama LE, Strik M, Moffat BA, Khan F, Kilpatrick TJ, van der Walt A, Galea MP, Kolbe SC. Front. Neurol. 2017; 8: e708.

Affiliation

Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.

Copyright

(Copyright © 2017, Frontiers Research Foundation)

DOI

10.3389/fneur.2017.00708

PMID

29449825

PMCID

PMC5799707

Abstract

Subtle gait and balance dysfunction is a precursor to loss of mobility in multiple sclerosis (MS). Biomechanical assessments using advanced gait and balance analysis technologies can identify these subtle changes and could be used to predict mobility loss early in the disease. This update critically evaluates advanced gait and balance analysis technologies and their applicability to identifying early lower limb dysfunction in people with MS. Non-wearable (motion capture systems, force platforms, and sensor-embedded walkways) and wearable (pressure and inertial sensors) biomechanical analysis systems have been developed to provide quantitative gait and balance assessments. Non-wearable systems are highly accurate, reliable and provide detailed outcomes, but require cumbersome and expensive equipment. Wearable systems provide less detail but can be used in community settings and can provide real-time feedback to patients and clinicians. Biomechanical analysis using advanced gait and balance analysis technologies can identify changes in gait and balance in early MS and consequently have the potential to significantly improve monitoring of mobility changes in MS.


Language: en

Keywords

balance; biomechanics; gait; mobility loss; multiple sclerosis

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print