SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lipton R, Ponicki WR, Gruenewald PJ, Gaidus A. Alcohol Clin. Exp. Res. 2018; 42(6): 1113-1121.

Affiliation

Prevention Research Center, Pacific Institute for Research & Evaluation, 180 Grand Avenue, Suite 1200, Oakland, CA, 94612.

Copyright

(Copyright © 2018, John Wiley and Sons)

DOI

10.1111/acer.13758

PMID

29672873

Abstract

OBJECTIVES: Past research has linked alcohol outlet densities to drinking, drunken driving and alcohol-related motor vehicle crashes (MVCs). Because impaired drivers travel some distances from drinking places to crash locations, spatial relationships between outlets and crashes are complex. We investigate these relationships at three geographic levels: Census block groups (CBGs), adjacent (nearby) areas, and whole cities.

METHODS: We examined risks for all injury MVCs as well as 'had been drinking' (HBD) and single-vehicle nighttime (SVN) subgroups using data from the Statewide Integrated Traffic Records System (SWITRS) across CBGs among 50 California cities from 2001 to 2008. Relationships between outlet densities at the city-level, within CBGs, and in adjacent CBGs and crashes were examined using Bayesian Poisson space-time analyses controlling for population size income and other demographics (all as covariates).

RESULTS: All injury MVCs were positively related to adjacent CBG population size (RR=1.008, 95%credible interval (CI)=1.004, 1.012), and outlet densities at CBG (RR=1.027, CI=1.020, 1.035), nearby area (RR=1.084, CI=1.060, 1.106) and city levels (RR=1.227, CI=1.147, 1.315), and proportion of bars or pubs at the city level (RR=2.257, CI=1.187, 4.125). HBD and SVN crashes were comparatively less frequent in high outlet density CBG (RR=0.993, CI=0.986, 0.999; RR=0.979, CI=0.962, 0.996) and adjacent areas (RR=0.963, CI=0.951, 0.975; RR=0.909, CI=883, 0.936), but positively associated with city-level proportions of bars (RR=3.373, CI=0.736, 15.644; RR=10.322, CI=1.704, 81.215). Overall a 10% increase in all outlets was related to 2.8% more injury crashes (CI=2.3%,3.3%), and 2.5% more HBDs (CI=1.7%,3.3%). A 10% increase in bars was related to 1.4% more crashes, 4.3% more HBDs and 10.3% more SVNs.

CONCLUSIONS: Population size and densities of bars or pubs were found to be associated with crash rates, with population effects appearing across cities and outlet effects appearing within dense downtown areas. Summary estimates of outlet and population impacts on MVCs must consider varying contributions at multiple spatial scales. This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.


Language: en

Keywords

alcohol availability; alcohol outlet density; motor vehicle crashes; spatial analysis

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print