SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tahenti B, Coghe F, Nasri R, Pirlot M. Int. J. Impact Eng. 2017; 102: 140-146.

Copyright

(Copyright © 2017, Elsevier Publishing)

DOI

10.1016/j.ijimpeng.2016.12.009

PMID

unavailable

Abstract

For many years, ballistic performance evaluation of protection structures makes use of the estimation of the ballistic limit velocity V50, the projectile impact velocity at which there is a 50 percent probability of perforation of the assessed structure. In recent years, enhancements to risk assessment required the estimation of the entire curve of the probability of perforation. Extreme values of complete perforation (partial penetration) at low (high) impact velocity are rare events of the studied system with binary response experiments. Existing methods have comparable accuracy in estimating the V50 velocity, and use the normality assumption to estimate any percentile of interest Vx. This contribution proposes to model the projectile evolution into the target as a diffusion process using the Brownian motion process. A Chi-square and Kolmogorov-Smirnov goodness of fit test is applied to estimate the drift and diffusion coefficients of the developed stochastic differential equation based on the Monte Carlo simulated sample and the experimental one. Under the assumption of constant drift and diffusion coefficients, the estimated value of the projectile deceleration matches its analytically computed value depending on the system parameters and configuration. The established model presents a comparable predictive ability, as existing methods, of the V50 with the advantage of defining a bounded velocity interval in which the perforation probability varies from zero to one in accordance with the physical behavior of the system. Furthermore, the fitted model provides the probability perforation of the structure at any impact velocity with an estimate of its variability.


Language: en

Keywords

Ballistic resistance; Penetration process; Perforation probability; Projectile impact; Stochastic modeling

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print