SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

J. Highway Transp. Res. Dev. (English ed.) 2018; 12(1): 58-66.

Copyright

(Copyright © 2018, Research Institute of Highway, Ministry of Transport in association with the American Society of Civil Engineers)

DOI

10.1061/JHTRCQ.0000611

PMID

unavailable

Abstract

This work revealed the flood damage rule of road-bridge binding sites in highway bridge engineering according to the Fr similarity criterion by adopting the orthogonal test design method and emphasizing, exploring, and analyzing the influence degree of flood damage on the model while considering the length into fluid of the model, the included angle between the model and the fluid direction, the slope ratio of the model, and the existence of protective measures for the model. According to a comparison and an analysis, ADINA finite element numerical calculation and model test results coincided perfectly.

FINDINGS suggested that when the length of the fluid into the model is long, the extent of the damage of the model structure body is serious. After water scouring the model, and when the included angle between the model and the fluid direction was set at 135 degrees, the deposits was enlarged and dispersed, the scouring depth was significant, and the model was nearly completely destroyed. The slope surface could effectively decompose the fluid velocity with its strong anti-scouring capability given a certain slope ratio of the model. The protective measures of grouting layers or cofferdams could fully protect the model structure body. These results provide important references for enriching the flood damage mechanism of road-bridge binding sites and the safety operation of related highway bridge engineering.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print