SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Teixeira LA, Coutinho JFS, Coelho DB. J. Neurophysiol. 2018; 120(2): 693-702.

Affiliation

Biomedical Engineering, Federal University of ABC.

Copyright

(Copyright © 2018, American Physiological Society)

DOI

10.1152/jn.00941.2017

PMID

29718807

Abstract

In daily living activities, performance of spatially accurate manual movements in upright stance depends on postural stability. In the present investigation, we aimed to evaluate the effect of the required manual steadiness (task constraint) on the regulation of dynamic postural control. A single group of young participants (n=20) were evaluated in the performance of a dual posturo-manual task of balancing on a platform oscillating in sinusoidal translations at 0.4 Hz (low) or 1 Hz (high) frequencies while stabilizing a cylinder on a handheld tray. Manual task constraint was manipulated by comparing the conditions of keeping the cylinder stationary on its flat or round side, corresponding to low and high manual task constraints, respectively.

RESULTS showed that in the low oscillation frequency the high manual task constraint led to lower oscillation amplitudes of the head, center of mass, and tray, in addition to higher relative phase values between ankle/hip-shoulder oscillatory rotations and between center of mass/center of pressure-feet oscillations as compared to values observed in the low manual task constraint. Further analyses showed that the high manual task constraint also affected variables related to both postural (increased amplitudes of center of pressure oscillation) and manual (increased amplitude of shoulder rotations) task components in the high oscillation frequency. These results suggest that control of a dynamic posturo-manual task is modulated in distinct parameters to attend the required manual steadiness in a complex and flexible way.


Language: en

Keywords

Posturo-manual control; body equilibrium; dual task; dynamic balance; oscillating platform

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print