SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

León-Cruz JF, Carbajal N, Pineda-Martínez LF. Nat. Hazards 2017; 89(1): 423-439.

Copyright

(Copyright © 2017, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s11069-017-2972-6

PMID

unavailable

Abstract

Extreme meteorological conditions favor the development of severe storms and tornadoes that may have largely impacts on the population despite its relatively short life. Tornadic severe storms have been documented around the World. In Mexico (MEX), the study of the occurrence of tornadoes and severe storms is relatively new. In this research, we have selected an event of severe tornadic storm in Ciudad Acuña, Mexico. The storm was driven by a frontal system moving southward from USA converging with a warmer moist air flux from the Gulf of Mexico. The tornado strikes on the Northeast of Mexico, in Coahuila State, on May 25, 2015. Imagery of infrared channel from GOES 13 satellite and the presence of a hook echo in radar data of May 25, 2015, indicate a supercell structure. The maximum values of radial velocity were about −20 and 15 m s−1. In this study, the WRF model was used in order to simulate the mesoscale meteorological conditions of the tornado. Model simulations capture atmospheric features observed in Doppler radar. The simulated storm-relative helicity values were between 400 and 500 m2 s−2. The simulated convective available potential energy values were of 3000 J kg−1. These values were higher than values for convective storms, located over the region of Ciudad Acuña in Mexico and Del Rio in USA. The supercell was a result of high humidity and temperature gradients, conditioned by frontal activity and moisture flux intensifications from the Gulf of Mexico.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print