SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Rao WH, Liao W, Wang H, Zhao HB, Wang YZ. J. Hazard. Mater. 2018; 360: 651-660.

Affiliation

Center for Degradable and Flame-Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu 610064, China. Electronic address: yzwang@scu.edu.cn.

Copyright

(Copyright © 2018, Elsevier Publishing)

DOI

10.1016/j.jhazmat.2018.08.053

PMID

30153630

Abstract

In this manuscript, flame-retardant and smoke-suppressant flexible polyurethane foams (FPUFs) were designed and synthesized based on novel liquid phosphorus-containing polyol named as PDEO and expandable graphite (EG). The reactive PDEO can be chemically added into the chain of FPUF, while expandable graphite was blended into the matrix of foam through foaming process. Benefitting from the incorporation of reactive PDEO with a long chain, the resultant FPUF containing EG exhibited considerable mechanical properties. More importantly, the synergistic effect of PDEO and EG can endow FPUF with great flame retardancy, anti-driping performances. Furthermore, the resultant FPUF/EG/PDEO foams exhibit considerable smoke suppression performances. The vertical burning test revealed that the FPUF containing 5 php PDEO and 10 php EG extinguished quickly without dripping and kept the original shape after removing the igniter. The cone calorimeter results demonstrated that the synergistic effect of PDEO and EG can effectively reduce the heat release rate (HRR) and total release rate (THR) of the composite foam. Remarkably, the smoke production release (SPR), total smoke production (TSP), light transmission and specific optical density results indicated significantly smoke-suppressant properties of the composite foam. The mechanism analysis confirmed that the synergistic effect of gas-condensed bi-phase action from PDEO and EG contributed the great flame retardation of the composite foam. This novel FPUF provides a promising strategy for producing the polymer foam with flame retardation, smoke suppression and anti-dripping performances.

Copyright © 2018 Elsevier B.V. All rights reserved.


Language: en

Keywords

Expandable graphite; Flame retardancy; Flexible polyurethane foam; Reactive phosphorus-containing polyol; Smoke suppression

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print