SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tollefson J. Nature 2018; 561(7721): 16-17.

Copyright

(Copyright © 2018, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1038/d41586-018-06090-0

PMID

30181632

Abstract

In California, where the state’s largest wildfire on record continues to burn, fires are getting bigger and less predictable — so much so that scientists are struggling to model them. Now, two research projects under way in the state are aiming to revamp the models that scientists, first responders and policymakers use to understand these costly and dangerous disasters.

One, slated to wrap up in the next few months, looks at how specific environmental factors such as extreme wind affect fires. The other, officially launched on 30 August, focuses on how wildfires will change in the coming decades as the climate warms.

“Something is definitely different, and it raises questions about how much we really know,” says Max Moritz, a fire scientist at the University of California, Santa Barbara.

The efforts come against a backdrop of abnormal fire seasons around the world. The giant California fire has torched about 166,000 hectares since late July and continues to burn in the northern part of the state. British Columbia in Canada is now experiencing its worst fire season on record. And in late July, after weeks of intense heat and some of the lowest rainfall totals since the late 1800s, officials in Sweden were battling roughly 50 wildfires across the country (see ‘Scorched earth’).

Bad behaviour
Researchers have been at a loss to explain a flurry of unusual fire behaviour in California in recent years: wildfires that burn hot throughout the night instead of settling down, as many used to; blazes that race down hillsides faster than before; and fires that torch suburban neighbourhoods once considered safe from such events. And in July, a tornado with unprecedented wind speeds of 230 kilometres per hour spun up inside a fire near Redding, California.

The problem, Moritz says, is that most of the fire models in use today are based on data from the past two or three decades. But it seems that fire behaviour might be shifting in response to climate faster than anybody expected, and that makes it increasingly problematic to extrapolate from past trends, he adds...


Language: en

Keywords

Climate change; Climate sciences; Ecology; Policy

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print