SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Raju N, Kumar P, Jain A, Arkatkar SS, Joshi G. Transp. Res. Rec. 2018; 2672(43): 122-133.

Copyright

(Copyright © 2018, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/0361198118787364

PMID

unavailable

Abstract

The research work reported here investigates driving behavior under mixed traffic conditions on high-speed, multilane highways. With the involvement of multiple vehicle classes, high-resolution trajectory data is necessary for exploring vehicle-following, lateral movement, and seeping behavior under varying traffic flow states. An access-controlled, mid-block road section was selected for video data collection under varying traffic flow conditions. Using a semi-automated image processing tool, vehicular trajectory data was developed for three different traffic states. Micro-level behavior such as lateral placement of vehicles as a function of speed, instant responses, vehicle-following behavior, and hysteresis phenomenon were evaluated under different traffic flow states. It was found that lane-wise behavior degraded with increase in traffic volume and vehicles showed a propensity to move towards the median at low flow and towards the curb-side at moderate and heavy flows. Further, vehicle-following behavior was also investigated and it was found that with increase in flow level, vehicles are more inclined to mimic the leader vehicle's behavior. In addition to following time, perceiving time of subject vehicle for different leading vehicles was also evaluated for different vehicle classes. From the analysis, it was inferred that smaller vehicles are switching their leader vehicles more often to escape from delay, resulting in less following and perceiving time and aggressive gap acceptance. The present research work reveals the need for high-quality, micro-level data for calibrating driving behavior models under mixed traffic conditions.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print