SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yang S, Shladover SE, Lu XY, Ramezani H, Kailas A, Altan OD. Transp. Res. Rec. 2018; 2672(34): 39-48.

Copyright

(Copyright © 2018, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/0361198118788190

PMID

unavailable

Abstract

Cooperative adaptive cruise control (CACC) is a driver-assist technology that uses vehicle-to-vehicle wireless communication to realize faster braking responses in following vehicles and shorter headways compared with adaptive cruise control. This technology not only enhances road safety, but also offers fuel savings benefits as a result of reduced aerodynamic drag. The amount of fuel savings is dictated by the following distances and the driving speeds. So, the overarching goal of this work is to explore driving preferences and behaviors when following in "CACC mode," an area that remains largely unexplored. While in CACC mode, the brake and throttle actions are automated. A human factors study was conducted to investigate truck drivers' experiences and performance using CACC at shorter-than-normal vehicle following time gaps. "On-the-road" experiments were conducted by recruiting drivers from commercial fleets to operate the second and third trucks in a three-truck CACC string. The driving route spanned 160 miles on freeways in Northern California and five different time gaps between 0.6 and 1.8 seconds were tested. Factors such as cut-ins by other vehicles, road grades, and traffic conditions were found to influence the drivers' opinions about use of CACC. The findings presented in this paper provide insights into the factors that will influence driver reactions to the deployment of CACC in their truck fleets.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print