SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Han Y, Chen ZQ, Hua XG, Feng ZQ, Xu GJ. Adv. Struct. Eng. 2017; 20(10): 1586-1598.

Copyright

(Copyright © 2017, SAGE Publishing)

DOI

10.1177/1369433216684350

PMID

unavailable

Abstract

This article presents a procedure for analyzing wind effects on the rigid frame bridges with twin-legged high piers during erection stages, taking into account all wind loading components both on the beam and on the piers. These wind loading components include the mean wind load and the load induced by the three turbulence wind components and by the wake excitation. The buffeting forces induced by turbulence wind are formulated considering the modification due to aerodynamic admittance functions. The buffeting responses are analyzed based on the coherence of buffeting forces and using finite element method in conjunction with random vibration theory in the frequency domain. The peak dynamic response is obtained by combining the various response components through gust response factor approach. The procedure is applied to Xiaoguan Bridge under different erection stages using the analytic aerodynamic parameters fitted from computational fluid dynamics. The numerical results indicate that the obtained peak structural responses are more conservative and accurate when considering the effect of each loading component on the beam and on the piers, and the roles of different loading components are different with regard to bridge configurations. Aerodynamic admittance functions are source of the important part of the error margin of the analytical prediction method for buffeting responses of bridges, and buffeting responses based on wind velocity coherence will underestimate the results.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print