SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bezemer KDB, Forbes TP, Hulsbergen AWC, Verkouteren J, Krauss ST, Koeberg M, Schoenmakers PJ, Gillen G, van Asten AC. Forensic Sci. Int. 2020; 308: e110160.

Affiliation

University of Amsterdam, Faculty of Science, Van 't Hoff Institute for Molecular Sciences, Amsterdam, the Netherlands; CLHC, Amsterdam Center for Forensic Science and Medicine, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, the Netherlands.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.forsciint.2020.110160

PMID

32014815

Abstract

High volume screening of parcels with the aim to trace the illegal distribution and selling of fireworks using postal services is challenging. Inspection services have limited manpower and means to perform extensive visual inspection. In this study, the presence of solid pyrotechnic residues collected from cardboard shipping parcels containing fireworks was investigated for direct in-field chemical detection. Two emerging trace detection techniques, i.e., capillary electrophoresis (CE)-based inorganic oxidizer detector and infrared thermal desorption (IRTD) coupled with direct analysis in real time mass spectrometry (DART-MS), were investigated for their potential as screening tools. Detection of non-visible pyrotechnic trace residues from real-case seized parcels was demonstrated using both screening techniques. However, the high nitrate background in the commercial CE system complicated its screening for black powder traces. IRTD-DART-MS allowed differentiation between flash and black powder by identification of the molecular inorganic ions. Compared to the portable CE instrument, rapid screening using IRTD-DART-MS is currently limited to laboratory settings. The capabilities of these emerging techniques established solid particle and trace residue chemical detection as interesting options for parcel screening in a logistic setting.

Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.


Language: en

Keywords

Capillary electrophoresis; Fireworks; Forensic explosives analysis; IRTD-DART-MS; Parcel screening; Pyrotechnics; Trace-explosive detection

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print