SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Johnson QR, Goatcher JD, Diehl C, Lockie RG, Orr RM, Alvar B, Smith DB, Dawes JJ. Int. J. Exerc. Sci. 2020; 13(2): 374-382.

Affiliation

School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA.

Copyright

(Copyright © 2020, Western Kentucky University)

DOI

unavailable

PMID

32148623

Abstract

Simulated fire ground scenarios (SFGS) provide firefighters with an opportunity to maintain skills, receive feedback, and optimize performance. Although there is extensive research on heart rate (HR) changes in the firefighter population, few examine the differences between positions. Firefighters are primarily responsible for fire suppression and control (23), officers for emergency operations and organizational management, paramedics for providing on-scene emergency medical care, and drivers are responsible for driving the fire apparatus. Utilizing HR analysis to quantify the physical demands of SFGS among firefighting crews by position. Sixty-seven male (age: 38.97 ± 9.17; ht: 177.99 ± 6.45 cm. wt: 88.83 ± 13.55 kg) firefighters (FF) participated in this investigation. FF crews performed two SFGS involving the suppression and control of a structural fire. Participants were outfitted with heart rate (HR) monitors and average heart rate (HRavg) and maximum heart rate (HRmax) data were collected for each of the two SFGS. Significant differences were observed for Age (P = 0.01), APMHR (P = 0.01), HRmax1 (P = 0.04), and HRmax2 (P = 0.04) in which firefighters had higher values for Age-predicted maximal heart rate (APMHR), HRmax1, HRmax2 compared to the officers. SFGS can be very physically demanding events that may elicit maximal or near maximal HR responses regardless of position. Based on the metabolic demands of these events and the individual firefighter's capabilities, this information can be used to develop resistance training and conditioning programs that optimize performance at maximal or near maximal heart rates.


Language: en

Keywords

Firefighter; SFGS; cardiovascular disease; disease risk; heart rate variability

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print