SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kleiven S. J. Biomech. 2020; 105: e109771.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.jbiomech.2020.109771

PMID

unavailable

Abstract

Falls among the elderly cause a huge number of hip fractures world-wide. The objective is to generate hip fracture force risk functions for elderly women and men in sideways falls which can be used for determining effectiveness of fall prevention measures as well as for individual assessment of fracture risk at the clinics. A literature survey was performed and ten publications were identified who contained several hundred individual femoral neck fracture forces in sideways fall for both elderly women and men. Theoretical distributions were tested for goodness of fit against the pooled dataset with the Anderson-Darling test (AD-test) and root mean square errors (RMSE) were extracted. According to the AD-test, a Weibull distribution is a plausible model for the distribution of hip fracture forces. A simple, exponential two-parameter Weibull function was therefore proposed, having a RMSE below 2.2% compared to the experimental distribution for both men and women. It was demonstrated that elderly women only can endure nearly half the proximal femur force for 5 and 10% fracture risk as elderly men. It should be noted though, that women were found to have significantly lesser body height and body weight which would produce less impact force during falls from standing height. The proposed sex-specific hip fracture risk functions can be used for biomechanically optimizing hip protectors and safety floors and for determining their effectiveness as a fall prevention measure.


Language: en

Keywords

Elderly; Hip fracture; Risk functions; Sideways falls

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print