SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hsu TY, Nieh CP. Sensors (Basel) 2020; 20(10): e2928.

Copyright

(Copyright © 2020, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s20102928

PMID

unavailable

Abstract

In this study, the measured accelerations of a single smartphone were used to provide an earthquake early warning system. In the presented system, after the smartphone is triggered, the triggering event is then classified as an earthquake event or not. Once an earthquake event is detected, the peak ground acceleration is then predicted every second until 10 s after the trigger. These predictions are made by the neural network classifier and predictor embedded in the smartphone, and an alert can be issued if a large peak ground acceleration is predicted. The proposed system is unique among approaches that use crowdsourcing ideas for earthquake early warning because the proposed system provides on-site earthquake early warning. In general, the accuracy rates of the earthquake classifications and peak ground acceleration predictions of the system were quite high according to the results of large amounts of earthquake and non-earthquake data. More specifically, according to said earthquake data, 96.9% of the issued alerts would be correct and 61.9% of the earthquakes that exceeded the threshold would have resulted in an alert being issued before the arrival of the peak ground acceleration. Among the false negative cases, approximate 97.8% would occur because of negative lead time. Using the shake table tests of worldwide and Meinong earthquake datasets, the proposed approach is confirmed to be quite promising.


Language: en

Keywords

smartphone; artificial neural network; earthquake early warning; on-site; peak ground acceleration

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print