SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang N, Alipour A. Transp. Res. D Trans. Environ. 2020; 83: e102281.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.trd.2020.102281

PMID

unavailable

Abstract

Transportation system infrastructure often experiences severe flood-related disruptions such as overtopping, erosion, and scour. The ensuing damages can result in enormous direct and indirect economic losses to the traffic network and consequently the individuals through conditions like inaccessibility to commuters and reduction in traffic safety. Many studies have claimed that a robust transportation system could significantly prevent such consequences from natural hazards such as floods, highlighting the importance of robustness measures that could be used by decision-makers to properly manage flooded transportation system. Most available measures related to network robustness assessment are qualitative, and while some recent studies have focused on such evaluation using quantitative assessment approaches related to environmental or social-economic operations, they lack the holistic view towards robustness under flood events. This study develops a composite multi-scale transportation-system robustness model considering flood hazards by synthesizing geographical damage recognition, topological functionality analysis, network operation evaluation, and traffic-user loss estimation. This integrated model has been applied in a real-world highway network, mainly revealing that a given intensive flood occurrence at different locations may result in a variety of after-flood disruptions in the transportation network. To assist the asset owners with developing more reasonable prevention and recovery plans, the developed multi-scale robustness index presents both visible multi-denominational flood consequences and an overall post-event transportation-system robustness indicator.


Language: en

Keywords

User costs; Flood hazard and risks; Network robustness; Transportation operation

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print